Remember to maintain security and privacy. Do not share sensitive information. Procedimento.com.br may make mistakes. Verify important information. Termo de Responsabilidade
Windows Vision APIs are a powerful set of tools and libraries provided by Microsoft to enable developers to incorporate computer vision capabilities into their Windows applications. These APIs offer a wide range of features, including image and video analysis, facial recognition, object detection, and more. By leveraging these APIs, developers can create applications that can understand and interpret visual information, opening up new possibilities for user interaction and automation.
The importance of Windows Vision APIs lies in their ability to enable applications to see and understand the world around them. This can be particularly useful in scenarios such as augmented reality, image recognition, surveillance systems, and accessibility tools. By integrating computer vision into Windows applications, developers can enhance the user experience, automate repetitive tasks, and create innovative solutions.
To align this topic with the Windows environment, it is important to highlight the native support and integration of Windows Vision APIs with Windows operating systems. This means that developers can seamlessly utilize these APIs within their Windows applications without the need for additional dependencies or external libraries. This integration ensures a consistent and reliable experience for both developers and end-users.
Examples:
using Windows.Media.Ocr;
using Windows.Storage;
using Windows.Storage.Pickers;
using Windows.UI.Xaml.Controls;
// Select an image using a file picker
FileOpenPicker filePicker = new FileOpenPicker();
filePicker.FileTypeFilter.Add(".jpg");
StorageFile selectedImage = await filePicker.PickSingleFileAsync();
// Load the selected image for OCR
SoftwareBitmap softwareBitmap;
using (var stream = await selectedImage.OpenAsync(FileAccessMode.Read))
{
var decoder = await BitmapDecoder.CreateAsync(stream);
softwareBitmap = await decoder.GetSoftwareBitmapAsync();
}
// Perform OCR on the image
OcrEngine ocrEngine = OcrEngine.TryCreateFromUserProfileLanguages();
OcrResult ocrResult = await ocrEngine.RecognizeAsync(softwareBitmap);
// Extract the recognized text
string extractedText = ocrResult.Text;
// Display the extracted text
TextBlock resultTextBlock = new TextBlock();
resultTextBlock.Text = extractedText;
using Windows.Media.FaceAnalysis;
using Windows.Storage;
using Windows.Storage.Pickers;
using Windows.UI.Xaml.Controls;
// Select an image using a file picker
FileOpenPicker filePicker = new FileOpenPicker();
filePicker.FileTypeFilter.Add(".jpg");
StorageFile selectedImage = await filePicker.PickSingleFileAsync();
// Load the selected image for face detection
SoftwareBitmap softwareBitmap;
using (var stream = await selectedImage.OpenAsync(FileAccessMode.Read))
{
var decoder = await BitmapDecoder.CreateAsync(stream);
softwareBitmap = await decoder.GetSoftwareBitmapAsync();
}
// Detect faces in the image
FaceDetector faceDetector = await FaceDetector.CreateAsync();
IReadOnlyList<DetectedFace> detectedFaces = await faceDetector.DetectFacesAsync(softwareBitmap);
// Display the detected faces
Image imageControl = new Image();
imageControl.Source = new SoftwareBitmapSource(softwareBitmap);
Canvas canvas = new Canvas();
canvas.Children.Add(imageControl);
foreach (var face in detectedFaces)
{
Rectangle faceRectangle = new Rectangle();
faceRectangle.Width = face.FaceBox.Width;
faceRectangle.Height = face.FaceBox.Height;
faceRectangle.Fill = new SolidColorBrush(Colors.Transparent);
faceRectangle.Stroke = new SolidColorBrush(Colors.Red);
faceRectangle.StrokeThickness = 2;
faceRectangle.Margin = new Thickness(face.FaceBox.X, face.FaceBox.Y, 0, 0);
canvas.Children.Add(faceRectangle);
}
// Display the canvas with detected faces