Remember to maintain security and privacy. Do not share sensitive information. Procedimento.com.br may make mistakes. Verify important information. Termo de Responsabilidade
Distributed computing is a method of dividing computational tasks across multiple machines to achieve faster processing, higher availability, and better scalability. In the context of Linux, distributed computing can be implemented using various tools and frameworks such as Apache Hadoop, Apache Spark, and MPI (Message Passing Interface). This article will guide you through setting up a distributed computing environment on Linux, highlighting its importance and providing practical examples.
Examples:
Setting Up Apache Hadoop:
Apache Hadoop is a popular framework for distributed storage and processing of large data sets.
Install Java:
sudo apt update
sudo apt install openjdk-11-jdk -y
Download and Install Hadoop:
wget https://downloads.apache.org/hadoop/common/hadoop-3.3.0/hadoop-3.3.0.tar.gz
tar -xzvf hadoop-3.3.0.tar.gz
sudo mv hadoop-3.3.0 /usr/local/hadoop
Configure Hadoop Environment Variables:
Edit ~/.bashrc
and add the following lines:
export HADOOP_HOME=/usr/local/hadoop
export PATH=$PATH:$HADOOP_HOME/bin
export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64
Configure Hadoop:
Edit the configuration files located in $HADOOP_HOME/etc/hadoop/
. For example, edit core-site.xml
to set the default filesystem:
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>
Start Hadoop:
$HADOOP_HOME/sbin/start-dfs.sh
$HADOOP_HOME/sbin/start-yarn.sh
Setting Up Apache Spark:
Apache Spark is another powerful tool for distributed data processing.
Download and Install Spark:
wget https://downloads.apache.org/spark/spark-3.1.2/spark-3.1.2-bin-hadoop3.2.tgz
tar -xzvf spark-3.1.2-bin-hadoop3.2.tgz
sudo mv spark-3.1.2-bin-hadoop3.2 /usr/local/spark
Configure Spark Environment Variables:
Edit ~/.bashrc
and add the following lines:
export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin
Run Spark Shell:
$SPARK_HOME/bin/spark-shell
Using MPI for Distributed Computing:
MPI is a standard for parallel programming in distributed computing environments.
Install MPI:
sudo apt update
sudo apt install mpich -y
Write an MPI Program:
Create a file named hello_mpi.c
with the following content:
#include <mpi.h>
#include <stdio.h>
int main(int argc, char** argv) {
MPI_Init(NULL, NULL);
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
printf("Hello from rank %d out of %d processors\n", world_rank, world_size);
MPI_Finalize();
return 0;
}
Compile and Run the MPI Program:
mpicc -o hello_mpi hello_mpi.c
mpirun -np 4 ./hello_mpi